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Abstract 

The diffraction intensities obtained from a computer 
simulation of a crystal exhibit substantial finite-size 
effects and converge only very slowly to the thermo- 
dynamic limit when the simulation box is enlarged. Two 
procedures that improve the convergence by correcting 
for this effect are compared. One of them, the elasticity- 
tensor correction, is shown to yield highly accurate 
results with a small simulation box. 

I. Introduction 

The harmonic approximation of the Hamiltonian is a 
general and analytically convenient concept for studying 
the thermal and mechanical properties of crystalline 
substances at low temperature. It explains diffraction 
intensities in terms of averaged atomic positions and 
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fluctuations and forms the basis for structure determina- 
tion even when harmonicity is only a poor approxima- 
tion. At high temperatures, however, when the system 
explores anharmonic regions of its phase space, it may 
not be good enough, especially if a system is to be 
studied in more detail than just a mean structure and 
temperature factors. Besides this, some crystals that 
contain liquids, e.g. protein crystals containing water, are 
not amenable to theories that allow atoms only to vibrate 
around mean positions. In such cases, computer simula- 
tion is nowadays the best tool. It is therefore desirable to 
have a general recipe for computing accurate theoretical 
diffraction intensities for a given potential-energy func- 
tion by simulation. 

Two theoretical concepts for such a recipe, the 'quasi- 
harmonic correction' and the 'elasticity-tensor correc- 
tion' are presented in ~ 2 and 3. To test them, they are 
applied to a simple model described in §4. The test 
results are shown and compared in ~ 5 and 6. § 7 gives a 
summary. 
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2. Basics and the quasi-harmonic correction 

The Bragg diffraction intensity for X-rays is given by 

/ar(k) = I( f (k)) l  2 (1) 

in terms of the thermal average of the Fourier transform 

iT(k) = ~ ~(k) exp(- ikr , i )  (2) 
li 

of the electron density 

f ( r )  : ~ f / ( r -  rig ) (3) 
li 

or, equivalently, by 

/ar(k) = IF(k)12NA(k) (4) 

in terms of the structure factor F(k)  and 

N if k is a reciprocal vector (5) 
A(k) = 0 otherwise. 

Here and below, the indices l , m , n - -  1 . . . . .  N 
enumerate the unit cells, i, j = 1 . . . . .  n enumerate the n 
atoms in a unit cell, f, (k) is the form factor for atom 
type i and k is the wave vector. The position 

rli = r t + s i + uit (6) 

of atom i in cell I can be decomposed into the position r t 
of the origin of the coordinate frame of cell 1, the average 
position s i of atom i in this cell and coordinate frame and 
the deviation uil from this average position. 

For a classical harmonic crystal with potential energy 

• ½ E  T 
"-" U i l ~ ) i l , j m U j m  , (7) 

l imj 

where the ~it.jm are 3 x 3 matrices of force constants, 
canonical averaging of (2) leads to the structure factor 

F(k)  = ~ F i (k) 
i (8) 

= ~--]~ f / / ( k ) e x p ( - i k s i -  k r U i N k / 2 ) .  
i 

Here, the 3 x 3 matrix of mean square fluctuations 

UiN = (uitu r) -- (k T / N )  ~ [~(q)]~l (9) 
q 

is computed from the 3n x 3n matrix q~(q), which 
consists of the 3 x 3 submatrices 

q~ij(q) = ~ t~il, jm exp[- iq(r t  - rm) ] 
I 

i , j = l  . . . .  n; a l lm.  (10) 

This matrix ~3(q) is inverted. The ii submatrix of the 
inverse is averaged over all wave vectors q of the 
harmonic modes of the crystal and multiplied by k T. For 
a macroscopic crystal with volume V, the sum over the 

modes can be replaced by an integral over the Brillouin 
zone (BZ): 

U i o o : k T V / ( 2 : r r ) a N  f [q~(q)]~ daq. (11) 
BZ 

This is precisely where the simulation has its short- 
coming. The periodic boundary conditions will permit 
only a few discrete modes. An integer multiple of their 
wavelength must fit exactly in the simulation box. All 
other modes are suppressed. Consequently, a simulation 
will yield diffraction intensities corresponding to (9) 
rather than to (11). In other words, a simulation will not 
lead directly to correct results, not even for a harmonic 
system. Fig. 1 shows why the error may be large. The 
integrand in (11) diverges as q-2 for q-+0, whereas the 
values of the integrand at the discrete q values of (9) lead 
to a poor approximation of (11), which does not contain 
the large contribution near q = 0. 

To correct for this error, we assume that, for any given 
(non-harmonic) system, the relation between the exact 
structure factors Fi(k) and their simulated counterparts 
Fi.sim(k ) is roughly the .same as for some harmonic 
approximation to the real system, i.e. 

~_ Fio o (k) /FiN (k). (12) Fi(k)/Fi.sim(k ) harm harm 

The right-hand side of (12), i.e. the relation of the 
harmonic structure factors computed with (11) and (9), 
respectively, then constitutes a correction factor for the 
simulation results. Since the correction arises mainly 
from long-wavelength acoustic modes, where all atoms 
in a unit cell perform the same motion, we can, of course, 
expect the correction factors (12) to be very nearly 
identical for all atoms. 

In search of a harmonic approximation that gives good 
correction factors, we compare two concepts: the quasi- 
harmonic correction and the elasticity-tensor correction. 
The quasi-harmonic correction results from the harmonic 
theory outlined above, except that the simulation average 
of the second derivatives of the potential energy replaces 
the matrix ~it.jm in (7). By means of (8), the quasi- 
harmonic (qh) correction factor for the Bragg intensities 
then becomes 

qh qh 2 e x p [ - k r ( U  qh - -  UiN ) k ] .  (13) i F i o o ( k ) / F i N ( k ) l  = qh 

3. The elasticity-tensor correction 

The elasticity-tensor correction is based on a more 
macroscopic approach. The whole crystal is regarded as a 
continuum, of which the volume element at r is displaced 
to r + u(r) by a thermal fluctuation u(r). The long- 
wavelength part of these fluctuations is precisely what 
the simulation suppresses but it can be described by 
means of the macroscopic elasticity tensor 

Co,,v,~ := (1/V)(OEA/OSo~,OSvs), (14) 
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where A denotes the (Helmholtz) free energy of a system 
with volume V and S~t ~ describes a linear deformation 

x~ --> ~ = S~/3xo. (15) 

Here and below, Greek indices denote Cartesian 
coordinates and are summed over when they occur twice 
in a product. A fluctuation formula for the elasticity 
tensor is derived in the Appendix. 

The above definition of the elasticity tensor is based 
on a linear deformation (15) of a macroscopic crystal, 
which we can also conceive as a volume element of a still 
larger crystal, at least as long as the wavelength of the 
deformation is much greater than the nearest-neighbour 
interatomic distances. The deformation matrix 

S = 1 + &a/0r (16) 

would then be the locally linear approximation to the 
more general deformation u(r) introduced above. To 
obtain the total free energy of the deformation, one 
expands the free energy of each volume element in a 
Taylor series up to second order and sums over all 
volume elements. Since areas of compression and 
expansion compensate for each other in first order, the 
free energy of deformation is 

= 1  ~ 1  3 82 A ~ f 8S~,C~/~y~SS~,~ d3r ~ f ( O/~u~)C~/~rs( O~ur) d r. 

(17) 

Using Parseval's theorem, we can replace u(r) by its 
Fourier transform fi(q), 

823 = ½f C~/zv~q,qsfi~fi×daq. (18) 

This means that, for each mode q, the associated free 
energy 

A(q) = l  - .  ~G.x(q) u~ fi~, (19) 

is proportional to the square of the ampitude with a 
proportionality constant 

Go, y(q) = C,,~y8 q~ qs- (20) 

With the probability distribution of the amplitude 
proportional to exp[-A(q) /kT] ,  we get, for the mean 
square fluctuation, 

(fi* fi×) = k TG~-~ (q). (21) 

Since in a thermal ensemble all modes contribute 
independently to a displacement u(r), we get for the 
mean square displacement at any r, analogously to (11), 

[U~],~, = (u,~ur) = [k T/(2rr) 3] f G~-~ (q) d3q. (22) 

Introducing spherical coordinates (q, 0, tp) in q space, we 
can factorize 

G-~(q) = H-I(o, tp)q -2, (23) 

integrate over q from zero to some qm(O, ~o), to be 

determined later, and obtain 

v~ = [k r/(2,031 sinO dO f H-I(O, ~o)q,,,(O, ~o) d~o. 
0 0 

(24/ 

In this elasticity tensor (et) approximation, the mean 
square displacement due to the simulated modes would 
be 

U~, t = (k T / V )  y]~ G-'(q) ,  (25) 
q 

which is analogous to (9) and where the sum is over the 
simulated modes that lie in the integration range in (22). 
Since only that part of C~or~ that is symmetric in/3 and 8 
contributes to (20), it follows from the discussion in the 
Appendix that G and H and hence their inverses are 
symmetric. For the computation of (24), we split 

C,~vs = C~/svs - 8,~vP lu (26) 

in the two parts shown, again following the discussion in 
the Appendix. For an unstrained crystal with isotropic 
pressure tensor P~ = 8/~P, we obtain 

G~×(q) e = C~,~,~ q, q8 - 8~,Pq 2" (27) 

We can now use the fact that only the symmetric part of 
C~e,~,s contributes to (27) and that this part is invariant 
under any permutation of its indices (see Appendix). 
Thus, we need to compute, apart from the pressure p, at 
most 15 independent components. This number can be 
further reduced by the symmetry of the crystal. 

Since this continuum model is adequate only for small 
q, it might be inappropriate to extend the ranges of 
integration in (22) and summation in (25) over the whole 
Brillouin zone of the crystal. The minimum range is 
certainly the Brillouin zone of the simulation box (see 
Fig. 1), which contains the largest part of the correction. 
All modes in this range are completely suppressed in the 
simulation and U~, t = 0. The next larger range would be 
one that contains one layer of simulated modes (26 
in three dimensions) around the minimum range 
(Iqxl < 37r/L in Fig. 1). One can also include more 
layers in the computation of the correction factor 

et et 2 IFo~(k)/F~(k)l = e x p [ - k r ( U ~  - U~t)k], (28) 

but only a test of the results will tell whether the 
inclusion of more modes with shorter wavelengths, for 
which the elasticity tensor is not strictly valid, will still 
improve the results. Note, however, that, for a fixed 
shape of the range, qm and hence (24) are inversely 
proportional to some linear dimension L of the simula- 
tion box and that, for a fixed number m of layers, the 
same is true for (25). Thus, for any m, the correction 
factor (28) can be written 

et et 2 IF~(k)/F~(k)l  = e x p [ - k  rXmk/L], (29) 
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where X,n = L(U~ - U~ t) does not depend on the size of 
the simulation box. This reveals the power law for 
extrapolation. 

In the following, the computation of (24) is outlined 
for a cubic crystal. In this case, only two independent 
components contribute to (27), namely 

and 

a ~ E E E = (Cx~ + Cyyyy + C==) (30) 

b 1 E  e e e = (C,~,~## + C,~# + C,,##~). (31) 

This leads to 

Goo,(q ) = 2bq,~q r + 8,,r[(a - 3b)q 2 + (b - p)q2], (32) 

which can be inverted analytically. Since a second-rank 
tensor with cubic symmetry is isotropic, we only need to 
know the trace of the inverse. In spherical coordinates, 
we get 

Tr H -~ = [(b - p)(b - 3p + 2a) + (a - 3b)(a + b) 

x (sin 4 0cos 2 tp sin 2 ~o + cos 2 0 sin 20)]/D, 

(33) 

D -- (b - p)E(a -- p) + (a -- 3b)E(a + 3b) 

x sin 4 O cos 2 ~0 sin E ~0 cos E 0 

+ (b - p)(a - 3b)(a + b) 

x (sin 4 0 cos E ~0 sin 2 ~0 + cos E 0 sin E 0). 

The integration range is delimited by 

qm(O, qg) = (1 + 2m)(rr/L) min(I sin 0cos tp1-1 , 

sin 0sin~01-1, I cos01-~), 
(34) 

(~ . . . . . . . . . .  -n~L 2rr/l. 3rr/l. 47r/1. 5Jr/l. 
qx 

Fig. 1. Contributions of  harmonic modes q to the mean square 
fluctuations qualitatively. For a simulation box of  length L along the 
x axis, simulated modes are at q~, = 2try~L, v = 1, 2 . . . . .  _< N / 2 .  
- -  Integrand of  (11); . . . .  discrete-modes approximation of  the 
integrand that yields the estimate (9) of  (11). The Brillouin zone of  
the simulation box is delimited by q,, = +Tr/L.  

Table 1. Some results of  the simulations: N is the number 
of  atoms, a and b are defined in (30) and (31), 
respectively, p is the isotropic pressure, Xm is defined 

in (29) 

All data are in 'Lcnnard-Jones units' .  

N 6912 2048 864 256 
MC steps per atom 8000 10800 12800 21600 
Quasi-harmonic correction 

Tr Uioo/3 (10-3t72) (equation I l) 6.500 6.503 6 . 5 1 1  6.525 
Tr UiN/3( lO-3o 2) (equation 9) 6.164 5.996 5 . 8 3 1  5.500 
Tr (Uioo - UiN)/3 (10-3o ~) 0.336 0.507 0.680 1.025 

Elasticity-tensor correction 
a (etT -3) 48.0 51.0 48.5 50.0 
b (eo -3) 28.5 29.1 28.5 29.0 
p (eo  -3) 1.81 1.81 1.80 1.79 
X0 (10 -3o3) 6.94 6.47 6.85 6.61 
;(t (10-3tr 3) 7.73 7.29 7.56 7.42 
X2 (10 -3o'3) 7.97 7.51 7.90 7.65 

where L -- V I/3 is the length of the simulation box. For 
m = 0, it is the Brillouin zone of the simulation box. For 
m > 0, it also includes m layers of simulated modes. 

4. Simulations 

To test the correction methods of the previous sections, 
they were applied to a series of Monte Carlo simulations 
of f.c.c. Lennard-Jones crystals with various box sizes. 
Temperature and volume were chosen in the crystal 
region of the phase diagram (Luckas, Lucas, Deiters & 
Gubbins, 1986), not far from the solid-liquid transition 
( kT  = 0 . 7 5 e  and V/N = 1.02o "3 in terms of the 
Lennard-Jones parameters e and o% The cut-off distance 
was 2.75o" and the maximum step size was adjusted to 
give roughly 50% acceptance rate. Several thousand 
steps per atom were performed for equilibration. Then, 
every ten steps per atom, a configuration was recorded 
for computing the averages. Besides the structure factors 
for the Miller indices 100 and 544, the virial, the 
expressions needed for the elasticity tensor (see Appen- 
dix) and the Hessian of the potential energy were also 
averaged. More details on the simulations are given in 
Table 1. 

For the calculation of the canonical average of (2), the 
atomic form factors were set to unity for simplicity. Note 
that (2) depends on the origin of the coordinate frame, 
which one usually sets at the centre of mass in a 
molecular dynamics simulation. In a Monte Carlo 
simulation, the centre of mass drifts randomly and each 
configuration has to be shifted back to prevent this drift 
from averaging out the structure in the long run. 

To characterize the anharmonicity of the test system, 
the Hessian of the potential was determined for the 
perfect f.c.c, crystal at T = 0 and a mean square 
fluctuation (11) of TrUly~3 = 0.0193o -2 was calculated 
from this for k T = 0.75e. This constitutes the harmonic 
aproximation result. Furthermore, a short simulation with 
256 atoms was run at k T = 0.10e to obtain an average of 
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the Hessian at this low temperature. The mean square 
fluctuation calculated from this for k T = 0.75e is 
TrUi=/3 = 0.0146tr 2. The quasi-harmonic approxima- 
tion result from the Hessians averaged at k T = 0.75e 
(see Table 1) is Tr Uiod3 = 0.0065a 2. Since these results 
should be identical for a truly harmonic system, the 
discrepancy of a factor of three between them reveals the 
pronounced anharmonicity of the test system. 

5. Results for the harmonic potential theories 

The uncorrected simulation results for the 100 reflection 
are plotted in Fig. 2 versus L-l as suggested by the power 
law for extrapolation established above. One can see, on 
one side, that the size dependence is considerable. On the 
other side, the power law is well obeyed and the straight- 
line fit extrapolates the data to --lnlFl0012 = 0.3158 for 
L = oo. By contrast, the quasi-harmonic approximation, 
with Hessians averaged at k T -- 0.75e, yields results that 

hardly depend on size and extrapolate to 
-lnlF~00/2 = 0.3010. This is already a great improve- 
ment over the harmonic approximation of the previous 
section, which would yield -lnlF~0012 = 0.895, but it 
still means a 1.5% overestimation of  the Bragg intensity 
IBr of the lowest-order reflection. 

Applying the quasi-harmonic correction factor (13) 
computed from each simulation to the results reduces 
their size dependence considerably. Furthermore, all 
values obtained are better than the quasi-harmonic 
approximation and they extrapolate to the correct limit 
(see Fig. 2). For the 544 reflection, Fig. 3 shows that the 
situation is essentially the same. Note that the extra-po- 
lated quasi-harmonic value of IBr is 12.5% to high. 

6. Results of  the elasticity-tensor correction 

In each simulation, the pressure and the elastic constants 
(30) and (31), shown in Table 1, were calculated as 

0.32 
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outlined in the Appendix. Then correction factors (28) 
were computed for ranges of integration in (22) and 
summation in (25) that contain m -- 0, 1, 2 . . . .  layers of 
simulated modes. The Xm (29) are reported in Table 1. 
The corrected results for the 100 reflection are compared 
with those of the quasi-harmonic correction in Fig. 4 on a 
magnified scale. While the values for m = 0 are close to 
the quasi-harmonic ones, those for m >_ 1 are all much 
better and extrapolate to -lnlF100l 2 = 0.3161 in excel- 
lent agreement with the previous section. The perfect 
correction seems to lie between m -- 1 and m = 2. The 
intensities estimated with m = 1 or m -- 2 are all within 
0.15% of the extrapolated value, which represents an 
amazing accuracy. With m > 2, these values over- 
compensate the box-size dependence of the uncorrected 
simulation results. Obviously, the elasticity tensor is not 
appropriate at the shorter wavelengths that they take into 
account. The remaining results shown in Fig. 4 are for 
the maximum m for which the integration range in (22) 
is still entirely within the Brillouin zone of the f.c.c. 
crystal. They are still very good estimates, though not the 
best ones. 

The results for the 544 reflection are shown in Fig. 5. 
They are completely analogous. For m >_ 1, all the 
estimated intensities are within 2.5% of the extrapolated 
value. 

7. Concluding remarks 

The results of the two previous sections have shown that 
both methods reduce the finite-size dependence of 
simulated diffraction intensities considerably. In contrast 
to the quasi-harmonic approximation, they can be 
extrapolated to the same infinite-size limit as the 
uncorrected simulation results using the power law based 
on the same theory. The accuracy of a one-simulation 
result is, however, much better for the elasticity-tensor 
correction method. Even for the very anharmonic system 
studied here and for only 256 atoms, the errors in the 
diffraction intensities are only 0.15% for a low-order and 
2.5% for a high-order reflection. One possible explana- 
tion for this is that the free energy as a function of 
deformation is more harmonic than the potential energy 
as a function of particle positions. Concerning the best 
choice for the number m of layers of simulated modes in 
the correction formula in applications where only one 
simulation is to be performed, the following recipe is 
proposed: compute the values for m = 1 and m = 2 and 
take the mean if the two values agree within the desired 
accuracy. 

There is also an important conceptual aspect that 
deserves mentioning. For very large unit cells, e.g. 
protein crystals, the quasi-harmonic theories involve very 
large matrices and become impractical. In the elasticity- 
tensor method, it is always a 3 x 3 man-ix that is inverted 
and the number of elastic constants needed never exceeds 
15. Furthermore, if there is liquid water between protein 

molecules, the quasi-harmonic theories, which require 
each atom to have an equilibrium position around which 
it can only vibrate, are not applicable. For the elasticity- 
tensor method, this does not pose a problem. 

APPENDIX 
Elasticity tensors 

The fluctuation formula for the elasticity tensor (14) can 
be derived from the free energy A = - k  TIn Q and the 
partition function 

Q - Qk f e x p [ - ~ ( . . ,  r~li...)/k T] (dx') 3~ (35) 

of a deformed crystal, where Qk is the kinetic part of Q 
and the integration extends over the deformed volume of 
the crystal. Integrating over the undeformed volume by 
returning to the unprimed coordinates introduces the 
transformation (15) as a set of variables: 

a = Ok f exp[-¢,(...Srli...)/k T] (det S) ~ ( d x )  3nN. 

(36) 

To obtain the derivatives, one needs 

O(detS)/OS~,, = (detS)(S-~)t~, (37) 

which can be proven starting from the definition of 
the determinant as the sum over all permutations P with 
sign (P) = +1 ( - 1 )  for an even (odd) permutation: 

O(detS)/OS~=O[~e sign(P)l-IS,e(,)]/OS~ 

= y]  sign(P) I-I S~,P~u). (38) 
P:P(a) = fl #:# ~ 

Since, for the _permutations P summed over here, 
sign(P) = (-1)~+~sign(P'), where P' is a permutation 
of the indices of the submatrix M ~ (which excludes the 
row a and the column 13), (38) becomes 

O(detS)/OS~t3 = (-1)~+~det M ~t~. (39) 

Comparison of this with the formula for the inverse, 

St~ = (detS)-~(-1)~+~det M ~ ,  (40) 

leads directly to (37). With this result, one obtains for the 
first derivatives 

OA/OSa~ : -(S-~)~rVP×~, (41) 

where 

VP×'~ = nNk TS×'~- ( Y~"x'×tiO~/ax"~tilti (42) 

is the volume times the pressure tensor. Using 

dS~a 1 : -S/~ 7 dStz v S ~  1 , (43) 
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which can easily be proven by multiplying the 
differential of the unit matrix 

0 = d l  = d (S- 'S )  = (dS-1)S + S - '  dS (44) 

by S-1 from the right, we get, for the second derivatives 
a t S = l ,  

OZ A / OS,~ OSy~ = n N k  T S t3rS,~8 

3t-<EXsli(~2(I)/OXyliOXotmj)X~6mj> 
li, mj 

- -  ( 1 / k  T ) [ ( ~ a ~ × ~ )  - (q/,~)(~r~)], 
(45) 

where 

qJo¢ = ~ (O¢/Oxoai)xati. (46) 
li 

If we formulate the potential as a function of the squared 
pair distances 

Plimj : Irti - rmjl 2, (47) 

which does not imply pairwise additivity, the second 
term on the right-hand side of (45) can be replaced by 

E Xsli (~2cl)/aXyli aXotmj)Xflmj 
ti, my 

= 4 ~ ~ (02cI)/Optit,i,Dp.,j.,,j,) 
li<l'i' raj<m'j' 

X X~mjm,j,Xflmjm,j,Xylili,i,Xslil, i, -JI- 8ayIJ'c~flS, (48) 

where (46) becomes 

~ = 2 ~ (O(D/aPl i l , i , )X¢ l i l i ,  l, Xsili ,  1, : Iig¢8ll. (49) 
li<l 'i ' 

Here, the components of the vectors rtit, i, : r t i -  rt, i, 
have been introduced and a < under a summation sign 
means that no atom pair must be counted twice. If we 
then use (42) in the form (qz,~) = nNkTS,~ - VP~ and 
add and subtract a term nNk TS~,Sy~, we can arrange the 
terms according to their symmetry properties: 

(~A/OS,~OS×~) 

= nNk T(813×~,~ ~ + 8,~×813 ~ + 8,~t38r~ ) 
/ 

( 4  ~ ~ (02~/OPtiri,OPmjz,j,) + 
li<l'i' mj<m'j' 

X°tmjm[i' X~mjm'j' Xylil'i' XSlil'i' I X 

- ( 1 / k T ) [ ( k o ~ q J × ~ )  - (~¢)(tp×~)] 
- n N k  TS~f i~ ,~ - 8 ~ r V P  ~ .  (50) 

The first term on the right-hand side has full Cauchy 
symmetry, i.e. it is invariant under any permutation of its 
indices. The second term, within (), has full Cauchy 

symmetry if the potential is pairwise additive, otherwise 
it has the same symmetry as the third and fourth terms, 
which are invariant under the interchanges of c~ with fl, y 
with 8 and aft with y& The last term is invariant only 
under the interchange of a with y and fl with 8. Another 
noteworthy symmetry property holds for the second, 
third and fourth terms. If we symmetrize any of them 
with respect to the second and fourth indices, it is 
automatically symmetrized with respect to the first and 
third indices and vice versa. It then has full Cauchy 
symmetry too. Symmetrizing C,,~r 8 with respect to its 
second and fourth indices also symmetrizes it with 
respect to its first and third indices. It does, however, not 
endow it with full Cauchy symmetry because of the last 
term. 

A result similar to (50) was obtained by Squire, Holt & 
Hoover (1969) but only for a pairwise additive potential 
and the derivation of the ideal-gas part was not given in 
that paper. Note that (50) is valid for any many-body 
potential, which is very important since the commonly 
used energy terms associated with bond angles, dihedral 
angles and improper torsions are three- and four-body 
terms. 

It should be mentioned that (14) is also called the 
(isothermal) 'displacement-gradient elasticity tensor' in 
the literature, especially when the terms 'elasticity tensor' 
or 'elastic constants' or 'elastic moduli '  are reserved for 

C~y~e := (1/V)(O2A/OE~¢OErD, (51) 

which is analogous to (14), but with the transformation 
matrix (16) replaced by the symmetric strain tensor 

E~, = ½ (S~S,~, - 8~y) 

= ½[OudOx ,, + Ou,,/Ox~ + (Ou~,/Ox~)(Ou~/Ox,,)]. 

(52) 

See e.g. Weiner (1983). The two tensors are related by 

E C,~r~ = C~¢r8 - 8~×P~, (53) 

E i.e. C,~,r ~ is given by the first four tems on the right-hand 
side of (50), divided by V, and has at most 21 
independent components. After symmetrization with 
respect to its second and fourth indices, it has full 
Cauchy symmetry and at most 15 independent compo- 
nents. For more fluctuation formulae for isothermal or 
adiabatic elasticity tensors, see e.g. Ray (1988). 
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